
i 
 

Maze Solving Robot Assignment 

 

ME30295: Electronics, Signals and Drives 

Harry Mills: 12245 

 

Summary 
This report details the process of writing and testing code to drive a maze solving robot. A 

Lego Mindstorms NXT robot programmed with RobotC code was used in this assignment. 

Light sensors pointing at the floor allowed the robot to follow a black line to not hit the walls 

of the maze, while ultrasonic distance sensors on the front and left of the robot detected the 

presence (or lack of) walls in the maze at certain points. 

A program was successfully written that used the left-hand to autonomously drive the robot 

from the start to the finish of the maze. Furthermore, using the recorded path, the shortest 

return route to the start of the maze has been calculated. This has been implemented in 

pseudo-code as an example of how this would be completed. The shortest return route is 

calculated by using an algorithm to simplify the recorded route until it can no longer be 

simplified; at which point the shortest return route has been calculated.  



ii 
 

Contents 
Summary ..................................................................................................................................... i 

1. Introduction ........................................................................................................................ 1 

2. Maze Solving Task ............................................................................................................... 2 

1.1. Line Following .............................................................................................................. 3 

1.2. Light Threshold ............................................................................................................ 3 

1.3. checkdirection() ........................................................................................................... 4 

3. Shortest Return Path .......................................................................................................... 6 

4. Discussion and Improvements ........................................................................................... 8 

5. Conclusion .......................................................................................................................... 8 

Appendix .................................................................................................................................... 9 



1 
 

1. Introduction 
This report details the writing and testing of code to solve a maze using a Lego Mindstorms 

NXT robot. Any 2D maze can be solved using the left-hand rule and it is very simple algorithm 

to implement; if you can turn left, turn left.  

Also described in this report is the method for calculating the shortest return path through 

the maze after reaching the finish via the left-hand rule. This was done using an iterative 

algorithm which removes redundancies in the recorded robot path until it can be simplified 

no further. 

Figure 1 shows the NXT robot and the construction of the maze. Black tape in a grid creates 

crossroads, or nodes, that the robot can detect with the light sensors as it drives through the 

maze following the tape. Figure 2 shows the physical offset of sensors on the robot which 

must be accounted for when calculating turning and sensing walls.  

Node 

Start 

End 

NXT Robot 
Figure 1 Construction of the maze solved in this task 

Figure 2 Relative position of sensors on the NXT robot. Note how the left distance sensor is located 
at the back of the robot 

Light sensors 

Front distance 

Side distance 

Finish 



2 
 

2. Maze Solving Task 
Figure 3 shows the flow diagram logic to solve the maze using the left-hand rule. This is very 

simple in operation and follows the process: drive to a node, turn left, if not possible go 

forward, if left and forward are not possible then turn right. The robot will turn right until 

there is not wall in front of it – allowing it to u-turn out of dead-ends inside the maze.  

Figure 3 Flow diagram for solving a maze using the left-hand rule 

vo
id

 c
h

ec
kd

ir
ec

ti
o

n
()

 
ta

sk
 m

ai
n

()
 



3 
 

1.1. Line Following 
The first task was to make the robot follow the lines on the floor of the maze by keeping the 

line between the two light sensors on the front of the robot. This was achieved using the 3 

lines of code shown in FIG.  

Line following is achieved by calculating the difference between the readings of the left and 

right light sensors. If the left light is over the line, the robot is too far to the right and the left 

light sensor will read lower than the right sensor. Vice versa for the right light.  

Figure 5 shows visually how this proportional difference 

correction operates. The difference between the values of 

the light sensors is used to drive the motors. If the right 

light value is lower (bottom case Fig 5) then the left motor 

will be driven forwards faster than the right motor in an 

attempt to reach equilibrium. The larger the difference 

between the light values, the faster the robot will correct 

to the line. 

Practically, it was useful to divide the light value being 

subtracted in Figure 4 as this prevented any negative 

speeds being sent to the wheel motors. This would have 

made the robot very jittery and slow to move around the 

maze. This effectively tunes the proportional control gain 

of the line following so it is always moving forward with 

less severe corrections when it deviates by a small 

amount. 

1.2. Light Threshold 
In order for the line following described to stop at each 

node and check the sensors to detect walls (Figure 3) a 

threshold between black and white on the maze floor is 

required. 

The readings between the 2 light sensors were offset 

slightly as one always read slightly lower on the same 

surface. Reading light values from the NXT display showed 

that when over white the light sensors outputted 

consistently around 50, and 30 when over black.  

 

Figure 4 Line following code 

Figure 5 Line following logic tries to keep 
both light sensors at the same level 



4 
 

This threshold is used to break the loop of line following in task main() by running the code 

shown in Figure 6 whenever both light sensors cross the threshold – when both light sensors 

cross a line at the same time. This occurs whenever the robot reaches a node. 

When the robot crosses a node, due to the physical location of the left sensor, the robot must 

drive forward a bit more until sensor passes the end of the wall. This happens because the 

left sensor is offset behind the light sensors – see Figure 7. 

 

Figure 7 The left distance sensor does not clear walls that end when the light sensors reach the corresponding node 

1.3. checkdirection() 
When the robot crosses a node, the function checkdirection() is called. This is the second half 

of Figure 3 and both checks the sensors for walls around the robot, and then executes turns 

based on this. 

Figure 6 Node detection using light thresholds stops the line following code whenever the robot crosses a horizontal line 

Left sensor does 

not clear the end of 

the wall 

Light sensors reach 

node 

Figure 8 The first part of checkdirection() checks the left distance sensor and turns left if possible 

Checks for wall on 

left – turns left if 

possible 



5 
 

As per the flowchart in Figure 3, the first step in the left-hand rule algorithm is to check if 

there is a wall on the left, and then turn left if possible. Figure 8 shows this is done by firstly 

checking if the detected side distance is over the threshold (there is no wall to the left), so the 

robot can turn left. A catch included is that if the sensor output is 255 (the sensor maximum) 

then there is also a wall on the left. This occurs because the ultrasonic receiver is probably 

not receiving the sound waves sent out. The most common cause of this was because the 

sensor was too close to the wall. 

The turning action code in Figure 8 turns the robot left (anti-clockwise) until the right light 

sensor reaches a line. The ensures that the line is between the light sensors so the robot can 

successfully continue following the line. 

Figure 9 shows the front sensor check that is run if there is a wall detected on the left. In this 

case it checks if there is a wall in front by comparing the front distance to the front threshold 

distance. Again, a catch for erroneous 255 readings due to sensor malfunction is included.  

If the reading is below the threshold then there is a wall in front and the robot executes the 

code in the else if statement. Firstly, the robot reverses slightly. This is to prevent the left light 

sensor from hitting walls (note its position in Figure 2). Then the robot turns right (clockwise) 

until the left light sensor reaches a line – so that the line ends up between the light sensors 

when the turn is complete as with the left turn. 

To finally complete the logic represented by the flow chart in Figure 3, this check must loop 

to allow the robot to perform a u-turn when at a dead-end. Calling checkdirection() at the end 

of this block immediately checks again and will perform another right turn if required. 

Complete maze solving code is attached in the appendix. 

  

Figure 9 Forward sensor check in checkdirection() 

Reverse to avoid 

bumping walls 

while turning 

Right turn then 

check to see if 

another right turn is 

needed 



6 
 

3. Shortest Return Path 
One the maze has been solved using the left-hand rule, an algorithm can be run on the stored 

movements to calculate the shortest return path to the start of the maze. This is done by 

removing redundant dead-ends in the maze path (left = L, right = R, forward = F): 

1. Any u-turns in the path can be replaced with RR. (FRRF, RRRL or LRRR) 

2. If consecutive LR or RL appear they can be deleted as they cancel out 

 A potential method of implementing this is represented by Figure 10 below. This uses a 

checking index to iterate through the sequence of moves found by solving the maze with the 

left-hand rule. If the next 2 moves are redundant (rule 2 above), they are skipped. If the next 

4 moves constitute a u-turn they are represented by RR in the shortest path code, and the 

checking index skips these. Otherwise, the index of maze path being checked is added to the 

shortest path sequence until the checking index reaches the end of the left-hand rule maze 

path. 

The algorithm shown below completes one iteration going through each move in the maze 

path. This would need to be run multiple times until no more simplifications can be made.  

Figure 10 Method of iterating through the solved maze path using an algorithm to remove redundant movements to get the shortest path through 
the maze 



7 
 

   

Figure 11 demonstrates how the algorithm iteratively removes redundancies in the path until 

it can be simplified no more. To calculate the shortest return path the order is simply 

reversed, and L and R changed to their opposites: 

  

Figure 11 Top: Example maze. Bottom: Visual representation of how the algorithm described in Figure 10 works in practice 
on the maze shown. 

Figure 12 Shortest return past for the maze shown in Figure 11 

Start 

Finish 



8 
 

4. Discussion and Improvements 
Implementation of the logic for the left-hand rule to solve was relatively simple. A 

straightforward algorithm (Figure 3) to check left, then forwards was all of the logic needed 

to drive the robot from the start to finish of the maze. However, practically implementing this 

so that the robot reliably followed the line, successfully turned and would continue following 

the line was more difficult to tune. Using the difference of the light sensor values the left and 

right wheels of the robot were driven proportionally to ensure the line was followed and any 

deviations quickly corrected. In this instance reliability was preferred over speed, although 

the proportional motor speeds could be tuned to achieve a faster maze solving speed,  

Practically, the biggest issue was implementing the turning function of the robot, especially 

when turning right. The positioning of the left-distance (Figure 2) sensor meant it would jam 

against the walls of the maze when turning right – sometimes triggering the light sensors to 

stop turning prematurely. This was mitigated by adding a short reversing movement before 

any right turns to allow more space for the robot to turn. 

This could also be fixed by moving the left-distance sensor further into the body of the robot, 

so it does not protrude. 

Another issue found during testing was that shadows over the maze can strongly affect the 

light sensor readings. This can affect the line following accuracy or turning reliability. This 

could be solved by adding a small light on the underside of the robot to remove any shadows 

cast from the surrounding environment. 

Finally, to achieve full autonomy a method of recognising the start and finish point of the 

maze is also required. This could be implemented by placing lights embedded in the floor of 

the maze so that when the robot drives over them the light sensors pick them up as brighter 

than the surrounding areas. This would trigger the robot to do a u-turn, calculate the shortest 

return path (Section 3), and execute these steps to reach the start. For this to work the lights 

embedded in the floor would need to be significantly brighter than the white maze floor. 

5. Conclusion 
This report has outlined the successful writing, implementation and testing of RobotC code 

to drive a Lego Mindstorms NXT robot around a maze using the left-hand rule to reach the 

finish. Furthermore, using an iterative simplification algorithm, it has been shown that the 

shortest return path from the finish to the start can be found for any sequence of moves. 

The physical placement of the left-distance sensor cause issues when performing right turns. 

This was rectified by adding a short reverse before performing any right turns. Improvements 

for other issues such as eliminating shadows from surrounding objects, or a method of 

detecting the start and finish location of the maze have also been suggested. 

  



9 
 

Appendix 

  

 

Figure 13 Complete RobotC code for driving the Lego Mindstorms NXT robot around the maze using the left-hand 
rule 


