Maze Solving Robot Assignment

T

ME30295: Electronics, Signals and Drives

Harry Mills: 12245

Summary

This report details the process of writing and testing code to drive a maze solving robot. A
Lego Mindstorms NXT robot programmed with RobotC code was used in this assignment.
Light sensors pointing at the floor allowed the robot to follow a black line to not hit the walls
of the maze, while ultrasonic distance sensors on the front and left of the robot detected the
presence (or lack of) walls in the maze at certain points.

A program was successfully written that used the left-hand to autonomously drive the robot
from the start to the finish of the maze. Furthermore, using the recorded path, the shortest
return route to the start of the maze has been calculated. This has been implemented in
pseudo-code as an example of how this would be completed. The shortest return route is
calculated by using an algorithm to simplify the recorded route until it can no longer be
simplified; at which point the shortest return route has been calculated.

Contents

SUIMIMIAIY ettt ettt ettt et et e e e e e e e e e e et e e e e e e et e e e e e e e e e e e e e e e e et e e e e e e e e eeaeeees i
Lo INErOQUCTION et 1
2. MAZ€ SOIVING TASK.eiiiiiiiiie ittt e e e st e e e s e e e s sabae e e s sabaeeeennraeeeas 2
00 S 1 V=N o] (o1 YT o ¥ - PRSPPI 3
1.2, LIt ThreShold....o e e e e e e e nnren e 3
00 T ol Y=Yl o [T g =Totd o] Y | TSP USRI 4
3. Shortest Return Pathooiiiii e 6
4. DiscussSion and IMProVEMENTSuuviiiieeiiiieiiirireeee e e serrrrre e e s e e e ssrerreeeeeeeesssnnsenreeeeeseens 8
5. CONCIUSION .ottt e e e s bt e e s e e e s e e e s be e e sab e e e sanee s 8
Yo7 0 =1 o Vo 1 PSPPSR 9

1. Introduction

This report details the writing and testing of code to solve a maze using a Lego Mindstorms
NXT robot. Any 2D maze can be solved using the left-hand rule and it is very simple algorithm
to implement; if you can turn left, turn left.

Also described in this report is the method for calculating the shortest return path through
the maze after reaching the finish via the left-hand rule. This was done using an iterative
algorithm which removes redundancies in the recorded robot path until it can be simplified
no further.

Figure 1 shows the NXT robot and the construction of the maze. Black tape in a grid creates
crossroads, or nodes, that the robot can detect with the light sensors as it drives through the
maze following the tape. Figure 2 shows the physical offset of sensors on the robot which
must be accounted for when calculating turning and sensing walls.

Finish

Node

Start

NXT Robot

Figure 1 Construction of the maze solved in this task

Light sensors

Front distance

Side distance

Figure 2 Relative position of sensors on the NXT robot. Note how the left distance sensor is located
at the back of the robot

task main()

void checkdirection()

2. Maze Solving Task

Figure 3 shows the flow diagram logic to solve the maze using the left-hand rule. This is very
simple in operation and follows the process: drive to a node, turn left, if not possible go
forward, if left and forward are not possible then turn right. The robot will turn right until
there is not wall in front of it — allowing it to u-turn out of dead-ends inside the maze.

Follow line until node
detected

Move forward so left
sensor sees past wall

Wall on

left? Turn left 90

Wall in
front?

= 1urn right 90°

Figure 3 Flow diagram for solving a maze using the left-hand rule

1.1. Line Following

The first task was to make the robot follow the lines on the floor of the maze by keeping the
line between the two light sensors on the front of the robot. This was achieved using the 3

lines of code shown in FIG.

readsensors();
motor(leftmotor) = (leftlight - rightlight/2 - 2);

motor(rightmotor) = (rightlight - leftlight/2 - 2);

Figure 4 Line following code

Line following is achieved by calculating the difference between the readings of the left and
right light sensors. If the left light is over the line, the robot is too far to the right and the left
light sensor will read lower than the right sensor. Vice versa for the right light.

Figure 5 shows visually how this proportional difference
correction operates. The difference between the values of
the light sensors is used to drive the motors. If the right
light value is lower (bottom case Fig 5) then the left motor
will be driven forwards faster than the right motor in an
attempt to reach equilibrium. The larger the difference
between the light values, the faster the robot will correct
to the line.

Practically, it was useful to divide the light value being
subtracted in Figure 4 as this prevented any negative
speeds being sent to the wheel motors. This would have
made the robot very jittery and slow to move around the
maze. This effectively tunes the proportional control gain
of the line following so it is always moving forward with
less severe corrections when it deviates by a small
amount.

1.2. Light Threshold

In order for the line following described to stop at each
node and check the sensors to detect walls (Figure 3) a
threshold between black and white on the maze floor is
required.

The readings between the 2 light sensors were offset
slightly as one always read slightly lower on the same
surface. Reading light values from the NXT display showed
that when over white the light sensors outputted
consistently around 50, and 30 when over black.

40

50

Figure 5 Line following logic tries to keep
both light sensors at the same level

if ((leftlight < lightthreshold)&&(rightlight < lightthreshold))
[/ If the Light Sensor reads a value less than 36:

waltlMsec(1000);
motor(leftmotor) = @;

motor(rightmotor) =
waltiMsec(500);
checkdirection();

Figure 6 Node detection using light thresholds stops the line following code whenever the robot crosses a horizontal line

This threshold is used to break the loop of line following in task main() by running the code
shown in Figure 6 whenever both light sensors cross the threshold — when both light sensors
cross a line at the same time. This occurs whenever the robot reaches a node.

When the robot crosses a node, due to the physical location of the left sensor, the robot must
drive forward a bit more until sensor passes the end of the wall. This happens because the
left sensor is offset behind the light sensors — see Figure 7.

Left sensor does
not clear the end of
the wall

Light sensors reach
node

Figure 7 The left distance sensor does not clear walls that end when the light sensors reach the corresponding node

1.3. checkdirection()

When the robot crosses a node, the function checkdirection() is called. This is the second half
of Figure 3 and both checks the sensors for walls around the robot, and then executes turns
based on this.

void checkdirection() V/ Checking whether there are walls to the side and to the front
readsensors();

if (sidedistance > sidethresh && sidedistance != 255) //if there is no wall to the left (hardcoded for 255 bug)
{

motor (leftmotor) = -7; // turn left

motor (rightmotor) = 7;

waitiMsec(2500) ; Checks for wall on

while (rightlight > lightthreshold) // while right is seeing white

left — turns left if
possible

readsensors();
motor(leftmotor) = -7; // turn left
motor(rightmotor) = 7;

motor (leftmotor) = 0;

motor(rightmotor) = @;

waitlMsec(5e0);

Figure 8 The first part of checkdirection() checks the left distance sensor and turns left if possible

As per the flowchart in Figure 3, the first step in the left-hand rule algorithm is to check if
there is a wall on the left, and then turn left if possible. Figure 8 shows this is done by firstly
checking if the detected side distance is over the threshold (there is no wall to the left), so the
robot can turn left. A catch included is that if the sensor output is 255 (the sensor maximum)
then there is also a wall on the left. This occurs because the ultrasonic receiver is probably
not receiving the sound waves sent out. The most common cause of this was because the
sensor was too close to the wall.

The turning action code in Figure 8 turns the robot left (anti-clockwise) until the right light
sensor reaches a line. The ensures that the line is between the light sensors so the robot can
successfully continue following the line.

else if (frontdistance < frontthresh || frontdistance == 255) // if there is a wall in front (hardcoded for 255 bug)

{

//motor(leftmotor) = -7; // reverse for turning circle Reverse to aVOid

//motor(rightmotor) = - .
//waitlMsec(1000); bumplng walls

//motor(leftmotor) = 8; //pause Whlle turning

//motor(rightmotor) = @;
//waitlMsec(500);

motor(leftmotor) = 7; // turn right

motor(rightmotor) = -7;

waitiMsec(2500);

while (rightlight > lightthreshold) // while left is seeing white nght turn then

{
readsensors(); check to see if

motor(leftmotor) = 7; V/ turn right
motor (rightmotor) = -7; another right turn is

}

motor(leftmotor) = @;

motor(rightmotor) = @; needed
waitiMsec(500);

checkdirection();

Figure 9 Forward sensor check in checkdirection()

Figure 9 shows the front sensor check that is run if there is a wall detected on the left. In this
case it checks if there is a wall in front by comparing the front distance to the front threshold
distance. Again, a catch for erroneous 255 readings due to sensor malfunction is included.

If the reading is below the threshold then there is a wall in front and the robot executes the
code in the else if statement. Firstly, the robot reverses slightly. This is to prevent the left light
sensor from hitting walls (note its position in Figure 2). Then the robot turns right (clockwise)
until the left light sensor reaches a line — so that the line ends up between the light sensors
when the turn is complete as with the left turn.

To finally complete the logic represented by the flow chart in Figure 3, this check must loop
to allow the robot to perform a u-turn when at a dead-end. Calling checkdirection() at the end
of this block immediately checks again and will perform another right turn if required.

Complete maze solving code is attached in the appendix.

3. Shortest Return Path

One the maze has been solved using the left-hand rule, an algorithm can be run on the stored
movements to calculate the shortest return path to the start of the maze. This is done by
removing redundant dead-ends in the maze path (left = L, right = R, forward = F):

1. Any u-turns in the path can be replaced with RR. (FRRF, RRRL or LRRR)
2. If consecutive LR or RL appear they can be deleted as they cancel out

A potential method of implementing this is represented by Figure 10 below. This uses a
checking index to iterate through the sequence of moves found by solving the maze with the
left-hand rule. If the next 2 moves are redundant (rule 2 above), they are skipped. If the next
4 moves constitute a u-turn they are represented by RR in the shortest path code, and the
checking index skips these. Otherwise, the index of maze path being checked is added to the
shortest path sequence until the checking index reaches the end of the left-hand rule maze
path.

The algorithm shown below completes one iteration going through each move in the maze
path. This would need to be run multiple times until no more simplifications can be made.

o

Input left-hand rule
solved maze path

Check from start of
maze path

Are LRRR, 3
Are LR or RL S Add current maze

the next 2 . path move to

moves? moves? shortest path list

Increase checking
index by 1
Increase checking

Increase checking index by 4

index by 2

Add RR to shortest Does checking

path list index = maze
path length?

Figure 10 Method of iterating through the solved maze path using an algorithm to remove redundant movements to get the shortest path through
the maze

FFFLFLFFFRFRRFLFIFRFF

‘ﬂ_’

RR

L

RR
RK
FFFLFLFFRFRFF

Figure 11 Top: Example maze. Bottom: Visual representation of how the algorithm described in Figure 10 works in practice
on the maze shown.

Figure 11 demonstrates how the algorithm iteratively removes redundancies in the path until
it can be simplified no more. To calculate the shortest return path the order is simply
reversed, and L and R changed to their opposites:

FFLFLFFRFRFFF

Figure 12 Shortest return past for the maze shown in Figure 11

4. Discussion and Improvements

Implementation of the logic for the left-hand rule to solve was relatively simple. A
straightforward algorithm (Figure 3) to check left, then forwards was all of the logic needed
to drive the robot from the start to finish of the maze. However, practically implementing this
so that the robot reliably followed the line, successfully turned and would continue following
the line was more difficult to tune. Using the difference of the light sensor values the left and
right wheels of the robot were driven proportionally to ensure the line was followed and any
deviations quickly corrected. In this instance reliability was preferred over speed, although
the proportional motor speeds could be tuned to achieve a faster maze solving speed,

Practically, the biggest issue was implementing the turning function of the robot, especially
when turning right. The positioning of the left-distance (Figure 2) sensor meant it would jam
against the walls of the maze when turning right — sometimes triggering the light sensors to
stop turning prematurely. This was mitigated by adding a short reversing movement before
any right turns to allow more space for the robot to turn.

This could also be fixed by moving the left-distance sensor further into the body of the robot,
so it does not protrude.

Another issue found during testing was that shadows over the maze can strongly affect the
light sensor readings. This can affect the line following accuracy or turning reliability. This
could be solved by adding a small light on the underside of the robot to remove any shadows
cast from the surrounding environment.

Finally, to achieve full autonomy a method of recognising the start and finish point of the
maze is also required. This could be implemented by placing lights embedded in the floor of
the maze so that when the robot drives over them the light sensors pick them up as brighter
than the surrounding areas. This would trigger the robot to do a u-turn, calculate the shortest
return path (Section 3), and execute these steps to reach the start. For this to work the lights
embedded in the floor would need to be significantly brighter than the white maze floor.

5. Conclusion

This report has outlined the successful writing, implementation and testing of RobotC code
to drive a Lego Mindstorms NXT robot around a maze using the left-hand rule to reach the
finish. Furthermore, using an iterative simplification algorithm, it has been shown that the
shortest return path from the finish to the start can be found for any sequence of moves.

The physical placement of the left-distance sensor cause issues when performing right turns.
This was rectified by adding a short reverse before performing any right turns. Improvements
for other issues such as eliminating shadows from surrounding objects, or a method of
detecting the start and finish location of the maze have also been suggested.

Appendix

config(Sensor, 51, sideSensor, sensorSONAR)

config(Sensor, 52, frontSensor, sensorSONAR)

config(Sensor, 53, rightLightSensor, sensorLightActive)

config(Sensor, 54, leftlLightSensor, sensorLightActive)

config(Motor, motorA, leftmotor, tmotorNXT, PIDControl, encoder)
#pragma config(Motor, motorB, rightmotor, tmotorNXT, PIDControl, encoder)
//*!1Code automatically generated by 'ROBOTC' configuration wizard

This program reads the light sensor and follow a line materialised by a black tape on a white floor
ROBOT CONFIGURATION

MOTORS & SENSORS:
[I/0 Port] [Name] [Type] [Description]
Port leftmotor NXT Left motor
Port rightmotor NXT Right motor
Port sideSensor Sonar Sensor side facing
Port frontsensor Sonar Sensor front facing
Port rightLightSensor Light Sensor floor facing
leftLightSensor Light Sensor floor facing

// global variables
int sidedistance = 8; // Will hold the values read in by the side Sonar Sensor.
frontdistance = @; // will hold the values read in by the front Sonar Sensor.
leftlight = @; /4 Will hold the values read in by the left Light Sensor.
rightlight = @; // Will hold the values read in by the right Light Sensor.
lightthreshold = 36; // Define the threshold between black and white colors (white ~ 58; black ~ 38)// (maze 1 = 36)
sidethresh = 29; // Define the threshold for detecting a wall
frontthresh = 31;

void displaysensors() {
displayCenteredTextline(@, "side distance"); /* Display side Sonar Sensor values */
displayCenteredTextLine(1l, "%d", sidedistance); /* to LCD screen using %d. *
displayCenteredTextline(2, "front distance™); /* Display front Sonar Sensor values */
displayCenteredTextLine(3, "%d", frontdistance); /* to LCD screen using %d. */
displayCenteredTextline(4, "left light"); /* Display left Light Sensor values */
displayCenteredTextLine(5, "%d”, leftlight); /* to LCD screen using %d. */
displayCenteredTextlLine(6, "right light™); /* Display right Light Sensor wvalues */
displayCenteredTextLine(7, "%d", rightlight); /* to LCD screen using %d. */
//waitlMsec(188); // Only update the screen every 186 milliseconds.

i

void readsensors()

i
sidedistance = SensorValue(sideSensor); // store side Sonar Sensor values in 'sonarValueSide' variable.
frontdistance = sensorValue(frontSensor); // store front Sonar Sensor values in 'sonarValueFront' variable.
leftlight = SensorValue(leftLightSensor); // Store left Light Sensor values in "lightValueleft’ variable.
rightlight = sensorValue(rightLightSensor) - 8; // Store right Light Sensor wvalues in 'lightvalueRight' variable and offset
displaysensors();

i

void checkdirection() [/ Checking whether there are walls to the side and to the front

{

readsensors();
if (sidedistance > sidethresh &% sidedistance != 255) //if there is no wall to the left (hardcoded for 255 bug)

motor(leftmotor) = -7; // turn left
motor (rightmotor) = 7;

waitlMsec(2500);

while (rightlight > lightthreshold) // while right is seeing white

readsensors();
motor(leftmotor) = -7; // turn
motor (rightmotor) = 7;

motor(leftmotor) = @;
motor(rightmotor) = @;
waitlMsec(568);
}
else if (frontdistance < frontthresh || frontdistance == 255) if there is a wall in front (hardcoded for 255 bug)

{

//motor (leftmotor) = -7; // reverse for turning circle
//motor(rightmotor) = -7;
//waitiMsec(1608) ;

//motor (leftmotor) = @; //pause
//motor(rightmotor) = @;
//waitiMsec(588);

motor (leftmotor) = 7; // turn right
motor (rightmotor) = -7;
waitlMsec(2568);
while (rightlight > lightthreshold) // while left is seeing white
{
readsensors();
motor (leftmotor) = 7 // turn right
motor (rightmotor) = -7;
¥
motor (leftmotor) = @;
motor (rightmotor) = @;
waitiMsec(508);

checkdirection();

¥
task main() // Line following function
while(true) // (infinite loop, also represented by while(1)).

readsensors();
motor (leftmotor) = (leftlight - rightlight/2 - 2);
motor (rightmotor) = (rightlight - leftlight/2 - 2);

if ((leftlight < lightthreshold)&&(rightlight < lightthreshold})
// If the Light Sensor reads a wvalue less than 36:
{

waitlMsec(1008);

motor (leftmotor) = @; // leftmotor is run at a @ power level.
motor (rightmotor) = @; [/ rightmotor is run at a @ power level.
waitiMsec(588);

checkdirection();

Figure 13 Complete RobotC code for driving the Lego Mindstorms NXT robot around the maze using the left-hand
rule

